pMT06 (the pDNA library) was transfected into MCF7 cells that are either TP53 proficient or TP53-KO - 24 hours later mRNA was isolated and barcodes were quantified by sequencing together with pMT06 pDNA counts. This was done in three independent replicates. In this script the barcode counts will be analyzed and some quality checks will be done.
The read distribution plots show that the pDNA samples are uniformly distributed. They also show that the MCF7-TP53-WT cells have highly active TP53 reporters, while random reporters got a lot of reads in the MCF7-TP53-KO cells.
Conclusion: All reads are matched to barcodes that come from the
reporter library. Very good. All barcodes can be found back. At a cutoff
of ~5 rpm, already ~10% of the barcodes are lost. I guess this is to be
expected.
Conclusion: None of the samples correlate with the pDNA input, which means that we are actually measuring the abundance of transcribed barcodes in the cDNA.
The read counts highly correlate!
Divide cDNA barcode counts through pDNA barcode counts
Data correlates very well.
paste("Run time: ",format(Sys.time()-StartTime))
## [1] "Run time: 7.879501 mins"
getwd()
## [1] "/DATA/usr/m.trauernicht/projects/P53_reporter_scan/docs"
date()
## [1] "Wed Jun 14 09:41:56 2023"
sessionInfo()
## R version 4.0.5 (2021-03-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.6 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8
## [8] LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 grid parallel stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggrastr_1.0.1 jtools_2.1.4 glmnetUtils_1.1.8 glmnet_4.1-4 Matrix_1.5-1 randomForest_4.6-14
## [7] ROCR_1.0-11 cowplot_1.1.1 ggforce_0.3.3 maditr_0.8.3 PCAtools_2.2.0 ggrepel_0.9.1
## [13] DESeq2_1.30.1 SummarizedExperiment_1.20.0 Biobase_2.50.0 MatrixGenerics_1.2.1 matrixStats_0.62.0 GenomicRanges_1.42.0
## [19] GenomeInfoDb_1.26.7 IRanges_2.24.1 S4Vectors_0.28.1 BiocGenerics_0.36.1 tidyr_1.2.0 viridis_0.6.2
## [25] viridisLite_0.4.0 ggpointdensity_0.1.0 ggbiplot_0.55 scales_1.2.0 factoextra_1.0.7.999 shiny_1.7.1
## [31] pheatmap_1.0.12 gridExtra_2.3 RColorBrewer_1.1-3 readr_2.1.2 haven_2.5.0 ggbeeswarm_0.6.0
## [37] plotly_4.10.0 tibble_3.1.6 dplyr_1.0.8 vwr_0.3.0 latticeExtra_0.6-29 lattice_0.20-41
## [43] stringdist_0.9.8 GGally_2.1.2 ggpubr_0.4.0 ggplot2_3.4.0 stringr_1.4.0 plyr_1.8.7
## [49] data.table_1.14.2
##
## loaded via a namespace (and not attached):
## [1] backports_1.4.1 lazyeval_0.2.2 splines_4.0.5 crosstalk_1.2.0 BiocParallel_1.24.1 digest_0.6.29 foreach_1.5.2
## [8] htmltools_0.5.2 fansi_1.0.3 magrittr_2.0.3 memoise_2.0.1 tzdb_0.3.0 annotate_1.68.0 vroom_1.5.7
## [15] prettyunits_1.1.1 jpeg_0.1-9 colorspace_2.0-3 blob_1.2.3 gitcreds_0.1.1 xfun_0.30 crayon_1.5.1
## [22] RCurl_1.98-1.6 jsonlite_1.8.0 genefilter_1.72.1 iterators_1.0.14 survival_3.2-10 glue_1.6.2 polyclip_1.10-0
## [29] gtable_0.3.0 zlibbioc_1.36.0 XVector_0.30.0 DelayedArray_0.16.3 car_3.0-12 BiocSingular_1.6.0 shape_1.4.6
## [36] abind_1.4-5 DBI_1.1.2 rstatix_0.7.0 Rcpp_1.0.8.3 progress_1.2.2 xtable_1.8-4 dqrng_0.3.0
## [43] bit_4.0.4 rsvd_1.0.5 htmlwidgets_1.5.4 httr_1.4.2 ellipsis_0.3.2 farver_2.1.0 pkgconfig_2.0.3
## [50] reshape_0.8.9 XML_3.99-0.9 sass_0.4.1 locfit_1.5-9.4 utf8_1.2.2 labeling_0.4.2 tidyselect_1.1.2
## [57] rlang_1.0.6 reshape2_1.4.4 later_1.3.0 AnnotationDbi_1.52.0 munsell_0.5.0 tools_4.0.5 cachem_1.0.6
## [64] cli_3.4.1 generics_0.1.2 RSQLite_2.2.12 broom_0.8.0 evaluate_0.15 fastmap_1.1.0 yaml_2.3.5
## [71] knitr_1.38 bit64_4.0.5 pander_0.6.5 purrr_0.3.4 sparseMatrixStats_1.2.1 mime_0.12 compiler_4.0.5
## [78] rstudioapi_0.13 beeswarm_0.4.0 png_0.1-7 ggsignif_0.6.3 tweenr_1.0.2 geneplotter_1.68.0 bslib_0.3.1
## [85] stringi_1.7.6 highr_0.9 forcats_0.5.1 vctrs_0.5.1 pillar_1.7.0 lifecycle_1.0.3 jquerylib_0.1.4
## [92] bitops_1.0-7 irlba_2.3.5 httpuv_1.6.5 R6_2.5.1 promises_1.2.0.1 vipor_0.4.5 codetools_0.2-18
## [99] MASS_7.3-53.1 assertthat_0.2.1 withr_2.5.0 GenomeInfoDbData_1.2.4 hms_1.1.1 beachmat_2.6.4 rmarkdown_2.13
## [106] DelayedMatrixStats_1.12.3 carData_3.0-5